144 research outputs found

    Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Get PDF
    Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.info:eu-repo/semantics/publishedVersio

    Transgene Excision Has No Impact on In Vivo Integration of Human iPS Derived Neural Precursors

    Get PDF
    The derivation of induced human pluripotent stem cells (hiPS) has generated significant enthusiasm particularly for the prospects of cell-based therapy. But there are concerns about the suitability of iPS cells for in vivo applications due in part to the introduction of potentially oncogenic transcription factors via viral vectors. Recently developed lentiviral vectors allow the excision of viral reprogramming factors and the development of transgene-free iPS lines. However it is unclear if reprogramming strategy has an impact on the differentiation potential and the in vivo behavior of hiPS progeny. Here we subject viral factor-free, c-myc-free and conventionally reprogrammed four-factor human iPS lines to a further challenge, by analyzing their differentiation potential along the 3 neural lineages and over extended periods of time in vitro, as well as by interrogating their ability to respond to local environmental cues by grafting into the striatum. We demonstrate similar and efficient differentiation into neurons, astrocytes and oligodendrocytes among all hiPS and human ES line controls. Upon intracranial grafting in the normal rat (Sprague Dawley), precursors derived from all hiPS lines exhibited good survival and response to environmental cues by integrating into the subventricular zone, acquiring phenotypes typical of type A, B or C cells and migrating along the rostral migratory stream into the olfactory bulb. There was no teratoma or other tumor formation 12 weeks after grafting in any of the 26 animals used in the study. Thus neither factor excision nor persistence of c-myc impact the behavior of hiPS lines in vivo.United States. National Institutes of HealthNew York State Stem Cell ScienceNational Institute of Neurological Disorders and Stroke (U.S.)Starr Foundation (Tri-Institutional Starr Stem Cell Scholars Fellowship

    Purified Mesenchymal Stem Cells Are an Efficient Source for iPS Cell Induction

    Get PDF
    Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the choice of cell type most suitable for inducing high-quality iPS cells remains unclear.Here, we generated iPS cells from PDGFRα+ Sca-1+ (PαS) adult mouse mesenchymal stem cells (MSCs) and PDGFRα⁻ Sca-1⁻ osteo-progenitors (OP cells), and compared the induction efficiency and quality of individual iPS clones. MSCs had a higher reprogramming efficiency compared with OP cells and Tail Tip Fibroblasts (TTFs). The iPS cells induced from MSCs by Oct3/4, Sox2, and Klf4 appeared to be the closest equivalent to ES cells by DNA microarray gene profile and germline-transmission efficiency.Our findings suggest that a purified source of undifferentiated cells from adult tissue can produce high-quality iPS cells. In this context, prospectively enriched MSCs are a promising candidate for the efficient generation of high-quality iPS cells

    Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.

    Get PDF
    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.Funding for the project was provided by the Wellcome Trust for UK10K (WT091310) and DDD Study. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003] - see www.ddduk.org/access.html for full acknowledgement. This work was supported in part by the Intramural Research Program of the National Human Genome Research Institute and the Common Fund, NIH Office of the Director. This work was supported in part by the German Ministry of Research and Education (grant nos. 01GS08160 and 01GS08167; German Mental Retardation Network) as part of the National Genome Research Network to A.R. and D.W. and by the Deutsche Forschungsgemeinschaft (AB393/2-2) to A.R. Brain expression data was provided by the UK Human Brain Expression Consortium (UKBEC), which comprises John A. Hardy, Mina Ryten, Michael Weale, Daniah Trabzuni, Adaikalavan Ramasamy, Colin Smith and Robert Walker, affiliated with UCL Institute of Neurology (J.H., M.R., D.T.), King’s College London (M.R., M.W., A.R.) and the University of Edinburgh (C.S., R.W.)
    corecore